

Programming Education on an Interactive Electronic Whiteboard

Masaki Nakagawa, Taro Ohara, Jin Kanda Hirokazu Bandoh and Naoki Kato
Department of Computer, Information and Communication Sciences

Tokyo University of Agriculture and Technology

nakagawa@cc.tuat.ac.jp

Abstract

This paper describes a new paradigm of programming
education using a large electronic whiteboard that
combines the merits of classroom lectures using a
black/white board and those of computer processing.
Using this system, a teacher can write a program on the
board, explain it, make the system recognize it and run
the program in front of the class while keeping the
attention of the students focused on the board. The system
allows input data to be entered by writing them on the
board.

1. Introduction

So far, we have been teaching programming on a
white/black board and telling students to try the programs
that we have explained after the class. Next week, their
answer is often that the programs have not worked. The
reason is quite simple. Programs that we write on a
white/black board are not always syntactically perfect and
moreover students often misread them or miscopy them in
their notebooks.

Then, the students ask us to lecture in a computer room.
Now, they can try programming immediately. But, the
problem is that they focus their attention on their PCs and
do not pay attention to our explanations. It is very
difficult to present intrinsic materials in a computer room.

On the other hand, the advantage with the white/black
board is: teachers can write or draw what they want to
express most easily using a chalk; teachers can gather the
attention of students to their writing; teachers and
students are familiar with it; teachers can have the control
over class learning; and teachers can present new
materials while confirming understanding of students by
watching their faces. But, we cannot show the execution
of programs in front of them.

Although practice on a PC is essential for students to
learn programming for themselves, to computerize the
white/black board and provide it with the capability of
showing program execution brings about new potential
for programming education.

We decided to develop a system to combine the merit
of the white/black board and that of computer processing
as a part of pen interface research. The system may open
the way for new applications other than programming
education. We call our system IdeaBoard (Interactive,
Dynamic, Electronic Assistant Board) and show its
appearance in Figure 1.

We have already presented hardware, new user
interfaces and some educational applications in user
interface communities [7-10]. In this paper, come back to
our original motivation to develop IdeaBoard and
describe the updated version of the programming
education system.

2. User interface design

The design guidelines of the programming education
system are based on those of the user interface with
IdeaBoard. In this section, we summarize them since they
are the basis for designing educational applications.

2.1. UI for a large surface with markers

If we just expand the usual GUI for the desktop
machine to the board size, problems occur in its usability.
A teacher has to move from side to side, stretch hands
from button to button, which not only makes the teacher
practice gymnastics but also often hides the board from

 Figure 1. IdeaBoard for Web browsing.

mailto:nakagawa@cc.tuat.ac.jp
Administrator
Proceedings of 2nd International Conference on Information Technology Based Higher Education and Training, Kumamoto, Japan
July 4-6, 2001

不明
458

the students. Often, operations too minute are also
required which are difficult for the hand of a standing
person. Moreover, double tapping with a marker is not as
easy as with a mouse. Concurrent use of markers and a
keyboard is far more difficult than that of a mouse and a
keyboard because their manipulation scales are so
different.

In order to design the interfaces, the size of the board,
its vertical position, operability by markers, body actions
by a teacher as well as the consistency with the desktop
GUI must be taken into consideration.

2.2. As few gestures as possible

Gestures have been an attraction of pen interfaces from
small size PDAs, note-size Pen-PCs [1] to large board
systems like LiveBoard [2]. A gesture (pen gesture) can
specify the kind of command and its target by a single
pen action, but their employment without careful
considerations may cause problems.

Gestures have simple shapes but simple shapes are hard
for machines to recognize. There is little context to
augment gesture recognition. Moreover, misrecognition
of gestures or forgetting to set an appropriate mode before
inputting gestures can yield an abrupt and unexpected
result so that it not only interrupts lectures or
presentations very badly but also make the user afraid to
use gestures.

On large board systems, the gesture-command
approach has been employed to solve the above-
mentioned problems caused by a simple expansion of the
desktop GUI to the board size [11] but we think that we
should try to enhance the desktop GUI to make it suitable
for large board systems without depending too much on
gestures.

We think that pattern recognition can be more usefully
employed for contents rather than for commands.

2.3. Extension of the desktop GUI

We are now very familiar with the desktop GUI. It has
apparent advantages against the old style of user
interfaces as well as being refined to be accepted from a
majority of users.

Even if a simple expansion of the desktop GUI to the
board size is not usable, to employ or extend its styles or
elements in a form that they are consistent with the
desktop while enhancing the usability of the board system
can still be effective.

2.4. Design guidelines of the user interface

In the process of considering the user interface for
large boards with markers and reviewing the desktop GUI,
we have set the following guidelines:

(1) Operability from arbitrary standing position of the
user
The teacher must be able to operate the board without
having to cross the surface or stretch hands from side to
side or from edge to edge.
(2) Easy operability with a single marker
This is to ensure that the teacher can operate the board
with a single marker without needing other markers,
keyboard, mouse, etc.
(3) Operability by body size movement
Too large a movement, required for a user to operate the
board, is hard and ends up hiding the board, but too
minute a movement is also difficult for the standing user.
Body size movement with direct pointing and
manipulation is not only natural to the user but also
appealing to the audience and it navigates their focus of
attention.
(4) Natural extension of the desktop GUI
This guideline ensures consistency with the desktop
environment. Even when the styles and components of
the desktop GUI must be modified based on the above
considerations, the modification should be very natural so
that users do not feel a big difference.
(5) Simplicity of displayed contents
This allows the teacher to operate the board without
confusion and the students can understand the contents
easily.
(6) More space for contents while less space for control
This is to make sure that the surface of the board is
utilized for education as much as possible; buttons, menus,
etc. should not hide the contents unless absolutely
necessary.
(7) Smooth movement of displayed objects
Smooth and continuous movement of displayed objects
seems more important for the shared large display so that
the audience can keep their focus of attention without
being annoyed by sudden changes of contents.

3. Design philosophy of educational software

Conventional CAI systems teach students instead of
teachers. This is mainly designed for self-learning but not
for IT-empowered lectures. On an electronic whiteboard,
it is the teacher who teaches students. Therefore, we need
to establish the design philosophy for this type of
education software on the electronic whiteboard. Since
several manufacturers are now producing electronic
whiteboards, it seem important to establish the design
philosophy and enrich educational applications according
to the philosophy.

We set up the following design philosophy:
•
•

Software does not explain. It is the role of teachers.
Software provides IT-supported pieces of materials

for the teachers to make a lecture.

不明
459

Teachers make stories of lectures. They should be
predefined in software.

4. Previous system

4.1. Overview

According to the guidelines, we made an initial version
of the programming education system. A teacher can
write a program in the C language into lines of character
input frames as shown in Figure 2. These input frames are
employed to facilitate handwritten program recognition.
They are not hard restriction for the teacher to write a
program unlike writing usual sentences into character
frames one by one. The teacher can also load programs
from files and save them back. Then, the teacher can
direct the system to recognize a handwritten program as
shown in Figure 3 and execute it as shown in Figure 4 by
tapping menu buttons shown center in the upper or lower
screen frame. The place to show the menu can be
switched.

4.2. Screen scroll

Since the electronic whiteboard has a limited size, and
some programs may be too large to show within the
display area, the scroll function is essential.

The standard scroll bar for a window is displayed on
the bottom right-hand side of the window. This is
convenient for operating in the traditional desktop
environment, but on an interactive electronic whiteboard

Figure 4. Result of program execution.

with a marker, it is hard to use. The teacher has to stretch
his or her hands from side to side and hide the board by
his or her body. This violates one of our basic design
goals.

Therefore, we realize scrolling the screen without using
the traditional scroll bar. Scroll area is located around the
input area. By touching a marker on any place in this area
and dragging it to arbitrary direction, the screen can be
scrolled in that direction.

4.3. Handwriting annotations

A great advantage of using a pen is that one can write
almost anything freely. It is very useful for the teacher to
be able to write annotations on the program that he/she is
explaining instead of merely showing the program.
Therefore, our system provides an annotation capability
on the program being explained by changing the mode of
the pen from program writing to the annotation mode.

4.4. Editing

Input, insertion and deletion of program text are the
most necessary editing functions. According to the design
specifications, the user must be able to perform these
operations with a single marker. We provide the input
function by allowing the user to write a character pattern
in any empty frame. Insertion and deletion can be
performed by tapping a marker between lines and
dragging right or left (insertion or deletion of character
frames within a line), or down or up (insertion or deletion
of lines). When a marker is dragged to the right, new
frames appear along with the dragging and the user can
write characters in them. When the marker is dragged to
the left, the characters on the right move over the dragged
characters which are deleted (Figure 5). Insertion and
deletion of lines can be done similarly by shifting lines

Figure 2. A handwritten program.

Figure 3. Result of program recognition.

不明
460

downward and making new lines or shifting lines upward.
All of the above functions are executed smoothly.

Smoothness has been sought to realize move and copy
functions as well. If you tap the marker between lines and
wait for a certain period, then the color of the upper line
is reversed. If you drag the marker up/down without
detaching it, the color of more upper/lower lines is
reversed. This shows that lines of text have been selected.
Then, when you tap the marker at some place outside the
reversed area, the selected lines are copied. On the other
hand, if you tap the reversed area again, the selected lines
are drawn into the marker smoothly. Then, when you tap
the maker at some place, the saved lines are released there.

4.5. Handwritten program recognition

With a marker, writing is the easiest and simplest way
to input program text. Without pattern recognition,
however, handwriting is just pen-trace patterns and
cannot be processed as program text. Therefore,
handwritten character recognition is necessary.

Here, we follow the lazy recognition scheme which
delays the display of recognition until needed. Lazy
recognition also provides an easier structure to employ
context processing [5].

When a teacher is writing a program and explaining it,
machine recognition is not only unnecessary for the
teacher and students, but it is even worse than when no
recognition is employed. Recognition immediately after a
pattern is written causes interruption because of the
correction of incorrect recognition and the verification of
recognition even if a pattern is correctly recognized.

When the teacher wants to show the execution of a
handwritten program, however, program recognition is
essential. Although the teacher might have to correct
some misrecognitions, it is worth the trouble since the
machine can show the execution of the program that the
teacher has just written in front of the students.

The recognition rate of handwritten programs is truly
much higher than usual text, since the constraints from
the grammars of programming languages are very strong,
so that the recognition rate is increased to almost the

perfect level except user-defined identifiers only for that
there is little constraints. The method of recognition is not
the scope of this paper and described in [4, 6].

4.6. Defects and problems

There were some fatal defects and problems in the
previous system:
(1) When a program requires input while running, it must
be made from a keyboard or from a file.
(2) The output characters in the execution window were
too small. This is due to the restrictions of the underlying
DOS window. Figure 5. Insertion and deletion of text by sliding

character frames. (3) Annotations could not be made on the execution
window. For explaining about the relation between a
source program and its execution, however, it is better to
be able to annotate over both the source codes and its
execution results.
(4) We placed the menu of buttons at the center in the
upper or lower screen frame so that the users can tap them
from the both sides, but the users had to stretch their
hands to tap distant buttons when the number of buttons
becomes large.

5. Revised system

In this section, we will present the revised system
focusing new features.

5.1. Program writing window

The layout of the program writing window in the
revised system consists of a handwriting input area and a
scroll area (Figure 6). The scroll area is located around
the input area except for the upper part of the window.

input area

scroll area tool bar

Figure 6. Revised screen layout.

不明
461

When the user touches a marker anywhere in the scroll
area and drags it to any direction, he or she can scroll the
window to that direction.

When the user taps somewhere in the scroll area with
the marker, the tool bar appears there. Since operations in
the tool bar are not so frequently performed, the tool bar
is displayed only when necessary. Moreover, only the
buttons used often are displayed and others are hidden.
When the functions associated with the hidden buttons
are required, the number of buttons displayed can be
changed by dragging the scroll area in the tool bar with
the marker.

A user can write a program in the handwriting input
area and make the system recognize it in the same way as
the previous system as shown in Figure 7..

5.2. Output of program execution

In order to have the control to the display of execution
results, the output of the program being executed is not
displayed directly, but a pipe with the system is created
and the output is displayed within the execution window
of the system explained later.

5.3. Data input

Now we can open an input area by tapping a menu
button and write input data there. For this purpose, we
employ the latest technology of writing-box-free
handwriting recognition [3] so that the teacher can write
input data without any writing grid.

We have deliberately avoided the use of a keyboard for
input in our system. A keyboard is neither easy to use for
a standing teacher nor easy to observe for the students
facing the teacher. When the teacher writes some input in
the input area, its recognition result is displayed there.
The teacher can confirm the result of recognition, correct
it if necessary, and then make the program continue its
execution by pushing the execution button (Figure. 8).

Input data thus recognized is sent to the running
program through the pipe in the same way that the
execution output is sent to the execution window.

5.4. Execution window

When the teacher is explaining a program, it is useful if
he or she can show the source program and its execution
results, and annotate them by writing as shown in Figure
9.

The execution window displays the source program
and its execution result within split areas of the window
and allows the user to annotate over both the areas as
shown in Figure 9. On the other hand, the user can scroll
each area separately. The user can choose either or both
areas to be displayed, and can change their proportions of
the window by dragging the splitter as shown in Figure
10.

Figure 7. Handwritten program recognition.

 Figure 8. Data Input and execution

Figure 9. Annotations made over both the areas.

Another alternative is to display the result of program
execution in a window separate from the source program,
but to allow the user to annotate over two or more
windows requires restructuring of our system software for
this system.

不明
462

The tool bar containing buttons for operations on the
execution window appears whenever the execution
window is displayed because it occupies only a small area

and these operations are used often when the teacher is
working on the execution window.

5.5. Implementation

We have implemented the revised programming
education system on the MS-windows ME using Visual
C++ 6.0. Its appearance is shown in Figure 11.

6. Conclusion

This paper described the design and implementation of
our revised programming education system on an

electronic whiteboard system. Using this system, a
teacher can verify the correctness of a program that
he/she has written immediately, show its execution, and
explain how the output is changed when some part of the
program is modified, without losing the familiarity and
advantages of lectures using chalk and blackboard (Fig.
1).

We are now planning to use the system for teaching a
programming course in our university curriculum to
evaluate it in actual use.

7. References

[1] R. Carr and D. Shafer: Power of PENPOINT, Addison-

Wesley. (1991).
[2] S. Elrod, R. Bruce, R. Gold, D. Goldberg, F. Halasz, W.

Janssen, D. Lee, K. McCall, E. Pedersen, K. Pier, J. Tang
and B. Welch: “Liveboard: a large interactive display
supporting group meetings, presentations and remote
collaboration,” Proc. CHI’92, pp.599-607 (1992).

[3] T. Fukushima and M. Nakagawa: “On-line writing-box-
free recognition of handwritten Japanese text considering
character size variations”, Proc. of 15th ICPR, Vol.2,
pp.359-363 (2000.9). Figure 10. The splitter window displaying the

source program and result.
[4] J. Kanda, S. Sawada and M. Nakagawa: “Programming

education system on an interactive electronic whiteboard,”
(in Japanese) Proc. of 14th Symposium on Human
Interface, Tokyo, pp.601-606 (1998.9).

[5] M. Nakagawa, K. Machii, N. Kato, T. Souya: “Lazy
recognition as a principle of pen Interfaces,”
INTERCHI’93 Adjunct Proc. pp.89-90 (1993.4).

[6] M. Nakagawa, K. Akiyama, L. V. Tu, A. Homma and T.
Higashiyama: “Robust and highly customizable
recognition of on-line handwritten Japanese characters,”
Proc. 13th ICPR, Vol. III, pp.269-273 (1996.8).

[7] M. Nakagawa, T. Oguni and T. Yoshino: “Human
interface and applications on IdeaBoard,” Proc.
INTERACT 97, pp.501-508 (1997.7).

[8] M. Nakagawa: “Enhancing handwriting interfaces,” Proc.
HCI International ’97, Vol. 2, pp.451-454 (1997.8).

[9] M. Nakagawa, K. Hotta, H. Bandou, T. Oguni, N. Kato
and S. Sawada: “A revised human interface and
educational applications on IdeaBoard,” CHI99 Video
Proceedings and Video Program and also CHI99
Extended Abstracts, pp.15-16 (1999.5).

[10] T. Oguni, T. Yoshino and M. Nakagawa: “Demonstration
of the IdeaBoard interface and applications,” Proc.
INTERACT 97, pp.613-614 (1997.7).

[11] E.R. Pedersen, K. McCall, T.P. Moran and F.G. Halasz:
“Tivoli: an electronic whiteboard for informal workgroup
meetings,” Proc. INTERCHI’93, pp.391-398 (1993.4).

Figure 11. Appearance of the revised system.

不明
463

	nakagawa@cc.tuat.ac.jp

